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Trapping of water waves by submerged plates 
using hypersingular integral equations 
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The trapping of surface water waves by a thin plate in deep water is reduced to 
finding non-trivial solutions of a homogeneous, hypersingular integral equation for 
the discontinuity in velocity potential across the plate. The integral equation is 
discretized using an expansion-collocation method, involving Chebyshev polynomials 
of the second kind. A non-trivial solution to the problem is given by the vanishing of 
the determinant inherent in such a method. Results are given for inclined flat plates, 
and for curved plates that are symmetric with respect to a line drawn vertically 
through their centre. Comparisons with published results for horizontal flat plates (in 
water of finite depth) and for circular cylinders are made. 

1. Introduction 
Consider a three-dimensional ocean with cylindrical boundaries; examples are 

oceans of constant depth with long canyons or ridges, a long circular cylinder 
submerged parallel to the free surface, and a plane beach. Introduce Cartesian 
coordinates Oxyz, with the origin at a point in the mean free surface, the y-axis 
pointing vertically down into the water and the z-axis parallel to the generator of 
the boundaries, so that the x-axis is horizontal. We are interested in wave motions 
that are spatially periodic in the z-direction. A natural problem is the scattering by 
a horizontal circular cylinder of a regular surface wave at oblique incidence to the 
axis of the cylinder; the wave is partially reflected and partially transmitted, so that 
the scattered waves propagate to x = +a. However, we are interested here in modes 
of motion of a different kind, called trapped modes; these are free oscillations (no 
incident wave) characterized by exponential decay as 1x1 + oc). 

It is known that some cylindrical structures can support trapped modes. In an 
oceanographical context, the basic geometry is a semi-infinite ocean, x > 0, with a 
shoreline at x = 0 and parallel depth contours, so that the sea floor is given by 
y = h(x) for some function h. Much is known about the existence and consequences 
of trapped modes for such geometries, going back to the Stokes edge wave of 1846; 
see, for example, Ursell (1952), Meyer (1971), LeBlond & Mysak (1978, $25) and 
Bonnet-Ben Dhia & Joly (1993). 

We shall be concerned with geometries of a different kind, where there is an infinite 
ocean of uniform depth (finite or infinite) containing a submerged horizontal cylinder 
with a bounded cross-section, a. The simplest configuration is a circular cylinder in 
deep water, so that SZ is a circle; assume that the centre of the circle is on the y-axis. 
Ursell (1951) proved that this configuration can support a trapped mode, which is an 
even function of x - a symmetric mode. His proof relies on the fact that the radius of 



360 N. F. Parsons and P. A. Martin 

the cylinder is sufficiently small compared to the wavelength. However, this restriction 
is not a physical one, as was shown by Jones (1953); indeed, his argument proves the 
existence of symmetric modes for a wide class of symmetric cross-sections. McIver & 
Evans (1985) used Ursell's formulation as the basis for a numerical method, and found 
several modes above circular cylinders. Martin (1989) developed another numerical 
method, based on a boundary integral equation, and found good agreement with the 
results of McIver & Evans (1985). He also found numerical evidence to support the 
existence of antisymmetric modes (odd functions of x) above a circular cylinder, and 
various modes above elliptical cylinders, even when the cross-section is not symmetric 
about the y-axis. 

In the present paper, we consider cylinders that have degenerated into thin rigid 
plates, motivated by a paper of Linton & Evans (1991). They considered a submerged, 
horizontal, flat plate in water of finite depth, and used a numerical method based 
on matched eigenfunction expansions. They found strong numerical evidence for the 
existence of trapped modes above such a plate. Here, we assume that the water is 
deep (this assumption could be relaxed), but we allow the plate to have different 
orientations (thus breaking the symmetry); we also consider curved plates. The 
method used is similar to that used by Parsons & Martin (1992, 1994) for analogous 
two-dimensional scattering problems : we reduce the problem to a hypersingular 
boundary integral equation for the discontinuity in the velocity potential across the 
plate. For trapped-mode problems, the integral equation is homogeneous, and so we 
expect non-trivial solutions only at discrete frequencies. 

As in previous work, we approximate the solution of the integral equation by means 
of a truncated series of Chebyshev polynomials of the second kind, multiplied by a 
suitable weight function. Collocation then gives a homogeneous matrix equation for 
the unknown coefficients. A non-trivial solution is then implied by the vanishing of 
the determinant. 

After formulating the problem for arbitrary plates, the paper has two sections, one 
on flat plates (93) and one on curved plates (94). We confirm the results of Linton 
& Evans (1991) for horizontal flat plates; symmetric and antisymmetric modes are 
found. Then, we follow these modes as the geometry is altered, either by rotating 
the plate or deforming the plate into the arc of a circle. In particular, as the 
arc approaches a complete circle, we find agreement with the corresponding modes 
computed by McIver & Evans (1985) for a circular cylinder. This agreement at both 
limits of the deformation (horizontal flat plate and solid circular cylinder), using three 
different numerical methods, suggests that the presented numerical results are correct, 
and that the method will be useful for other configurations. 

2. Formulation 
Consider a long thin plate, with cross-section r ,  submerged beneath the free 

surface of deep water. We look for standing-wave solutions of the corresponding 
three-dimensional boundary-value problem in the form 

q x ,  y ,  z ,  t) = qqx, y) cos lz cos cot, 

where 1 is the wavenumber in the z-direction, w is the frequency and 4 is a real 
potential. By combining solutions of this type (with other trigonometric variations 
in z and t), we can construct solutions for propagating waves. For example, it is 
known that the problem with 1 < K ,  where K = w 2 / g  and g is the acceleration 
due to gravity, arises in the scattering of regular surface waves at oblique incidence 
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to the plate. However, for 1 > K ,  there may be discrete values of 1 for which a 
non-trivial 4 exists, in the absence of any forcing or incident waves, and for which 
4 + 0, exponentially, as x + 00 (Ursell 1968 showed that if lgrad 41 + 0 as 1x1 + 03, 
then 4 necessarily decays exponentially). These are trapped modes. One can think of 
(suitable combinations of) them as waves that are guided by the plate. 

The three-dimensional potential @ satisfies Laplace's equation and the usual ho- 
mogeneous boundary conditions. Thus, the two-dimensional potential 4(x, y )  must 
satisfy the modified Helmholtz equation 

a24 a24 2 

ax2 ay2 
- + - - 1 4 = 0 in the fluid, 

(2.2) 
a4 
aY 

- 8 4  

4 1 cos P + - = 0 on the free surface, y = 0, 

and 

= 0 on the plate, r ; (2.3) an 
a / a n  is normal differentiation on r .  For trapped modes, we also require that 

lgrad $ 1  + 0 as x2 + y2  + 00. (2-4) 

Here, because of the assumption that 1 > K ,  we find it convenient to introduce a new 
variable P,  defined by K = 1 cos P .  We call 1 = K the lower cut-08 

An appropriate fundamental solution for this problem is given by (Ursell 1951) 

G ( P ,  Q )  = Ko(W + Ko(lRi) + 2 cot P %(P, Q), 
where P = ( x , y )  and Q = ( 5 , ~ )  are points in the fluid, K ,  is the modified Bessel 
function of the second kind and order n, 

cos (1X sinhp) dp, sinp e-IY coshp 

cash p - cos P 
X = x - 5 ,  Y = y + y ~ ,  R2 = X2 + ( y  - 
and (2.4), and has a logarithmic singularity at P = Q. 

and Rf = X 2  + Y 2 .  G satisfies (2.1), (2.2) 

'3 can be evaluated directly from (2.5) or from an expansion due to Ursell (1962), 
00 

9 = C em(-l)mIm(lR1) {(n - P )  cos me1 cos mp + 01 sin m01 sinmp) 
m=O 

00 

- 2C(-l)"'Lm(1R1) cosmO1 sinmfl, (2.6) 
m=1 

where e0 = 1, em = 2 for m > 0 and O1 = tan-'(X/Y). The function L, is defined by 

where I, is the modified Bessel function of the first kind; the computation of Lm is 
discussed in Appendix A. 

We now apply Green's theorem to 4 and G to give an integral representation for 
4 valid throughout the fluid domain. Thus, we find 
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where [4(4)] is the discontinuity in 4 across the plate at q ;  we use the lower case 
letters p and q to denote points on the plate. Now, because G is logarithmically 
singular, it is known that when applying (2.3) to (2.8), it is permissible to interchange 
integration and normal differentiation, provided that the integration is redefined as a 
Hadamard finite-part integral; the legitimacy of this procedure has been proved by 
Martin & Rizzo (1989). Thus, we are led to consider the homogeneous, hypersingular 
integral equation 

which is to be solved subject to [4] = 0 at the two edges of r.  (The cross on the 
integral sign in (2.9) signifies that it is to be interpreted in the finite-part sense; see 
Martin & Rizzo 1989 for definitions and further information.) Our aim is to find 
pairs of parameters 1 and p, with fixed geometries, for which non-trivial solutions 
to (2.9) exist. 

2.1. The kernel 

A general form of the kernel of (2.9) can be constructed for use with any r .  Denote 
the unit normals at p and q by n(p)  = (ny,n;) and n(q)  = (n: ,n;) ,  respectively. Then, 
applying the formula 

to G, using the expansion (2.6), it can be shown (Parsons 1994) that the kernel takes 
the form 

(2.10) 
A,- 

anpan, R2 = - {(ZR)K1(1R)} - + 1 2 X ( X ,  Y ) ,  

X~ = $ 2 ( 1 ~ 1 )  sin 201 + 2~~ ( I R ~ )  sin o1 cosp + 2 x 2  cos2 p, 
X3 = - iKo(ZR1) + Xi  cot p, 

00 

z1 = 2 ~ ( - ~ ) m ~ m ( ~ ~ 1 ) c o s m ~ 1 s i n m p  
m= 1 

- e-K Y [(n - p)  cosh(ZX sin p )  - 0 1  sinh(ZX sinp)] , 
00 

~2 = 2 C (-I), L, ( 1 ~ 1 )  sin m01 cos mp 
m=l  

- e-K Y [(n - p )  sinh(1X sinp) - O1 cosh(1X sin p)] . 

In (2.10), the terms in braces tend to one as Z + 0. 

(2.12) 
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Y 

FIGURE 1. Geometry of the submerged, flat plate. 

3. Flat plates 

at an arbitrary angle 8 to the vertical (figure 1). 
In this section, we consider the simplest case of a flat plate of length 2a, inclined 

3.1. Method of solution 
We first parametrize the geometry in terms of a single parameter, thereby reduc- 
ing the problem to a one-dimensional, hypersingular integral equation. A suitable 
parametrization of the plate is 

c ( t )  = at sin 8, q( t )  = d + at cos 8, -1 d t d 1, 

where q = ( 5 , ~ )  and 181 ,< n/2;  d is the submergence of the mid-point of the plate, 
and satisfies d > a cos 8 to ensure that the plate is completely submerged. The point 
p = (x ,y )  on r has the same parametrization, but with t replaced by s. It follows 
that R = aJs  - t J ,  n(p) = n(q)  = (-cosO,sinO), JV = 1, 0 = 0, nin: - ncn: = 0, 
nin; - n;n; = cos 28, X = a ( s  - t )  sin 8 and Y = a (s + t )  cos 8 + 2d. Substituting these 
results into (2.10) and (2.11), gives 

where 

Y ( R )  = (1/R)Kl(W, (3.2) 

+ (2 C O S ~  p - ; cos 2 8 ) ~ ~ ( & )  + X&OS 28 - cos 2p) cot p, 
2 ( X ,  Y )  = i&(lR1) cos 201 + Kl(IR1) cos 0 1  cos p 

and X1 is defined by (2.12). 

Expanding K1(lR), we find that 
For computations, we simplify (3.1) as follows. Consider the singular term (3.2). 

Y ( R )  = RP2 + i12 log ( i IR)  + 129(R) 

where 
W ( R )  = (lR)yKl(lR) - ( m - 2  - ; log ( i1R).  (3.3) 

We can see that there is a hypersingular term (RP2) ,  a logarithmically singular term 
and a regular term (9). For the regular term, we can use the expansion 

--x rn!(rn+l)! 
m=O 

rn!(rn+ l)! 4 
m=l 



364 N. F. Parsons and P. A.  Martin 

when 1R is small, where lp (m) is the digamma function; for larger lR, we simply use 
its definition (3.3). Hence, the integral equation (2.9) can be written as 

1 1 I1 & dt + (la)’ ll f(t)K(s, t) dt = 0, -1 < t < 1, (3.4) 

where f( t )  = [4(q(t))], f (+ l )  = 0 and 

K(s ,  t )  = ; log ( i l a l s  - t i )  + 2(a ls  - t l )  + X ( X ,  Y); 

both W and X‘ are non-singular. 

3.2. Numerical procedure 
To solve the integral equation (3.4), we adopt the procedure used by Parsons & 
Martin (1992) for scattering problems. Thus, we choose the expansion 

N 

f ( t )  = (1 - t ’ ) l / ’ C a n U n ( t )  (3.5) 
n=O 

and then collocate at s j ,  j = 0,1,. . . , N, using the collocation points 

s j = c o s (  (2 j  + l )n  ) ,  j = o , 1 ,  ..., N ;  
2 N + 2  

U,(t) is a Chebyshev polynomial of the second kind, defined by 

sin ( n  + 1)lp 
Un(COS lp) = 

sinly ‘ 

Our experience with scattering problems and the theoretical results of Golberg (1983, 
1985) assure us that the above expansion-collocation method is efficient and effective : 
the method is uniformly convergent. So, substituting (3.5) into (3.4) and collocating, 
we find that 

N 

C a n B n ( s j )  =o, j = 0 , 1 ,  ..., N ,  (3.7) 
n=O 

where 

Bn(sj)  = Y , ( s j )  + (la)’ (1 - t2)’”Un(t)X(X,  Y)dt, 

1 

dt + (la)’ 1 1 ( 1  - t’)”’ U,(t)W(als - tl)dt 
(1 - t’)’/2Un(t) 

Y n ( S )  = 

(1 - t2)’/’ U n ( t )  log ( i lals  - t i )  dt 

and X, Y are evaluated at s = s j .  Before we discuss the procedure for finding 
non-trivial solutions to (3.7), we note three results of use in evaluating (3.8) and (3.9). 
First, we have the well-known relation 

(1 - t2)1” U,(t)  
dt = -n(n + 1)Un(s). 

This result is one of the main advantages of the above scheme, whereby any difficulty 
encountered in evaluating Hadamard finite-part integrals numerically is conveniently 
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avoided. The integral W, is evaluated in Appendix B 

for n 2 1, where T, is a Chebyshev polynomial of the first kind. Finally, we note that 
the collocation points which we use are symmetric around s = 0. With this knowledge, 
we can make use of two properties of Y,, namely, -Y,(s) = Y,,(-s) when n is even 
and 9',,(s) = --Y,(-s) when n is odd (these are easily derived by letting s = -s 
and t = -t in the definition of 9,, and then using the even/odd properties of U,). 
Moreover, for horizontal plates, we can go further, for then we have B,(s) = B,(-s) 
when n is even and B,(s) = -B,(-s) when n is odd. These last two properties are 
useful in reducing computation time for what turns out to be a lengthy process. 

To find non-trivial solutions of the problem, we see from (3.7) that we need to 
search for parameters d,  6, 1 and p, such that the determinant of B, (si) vanishes. 
Clearly, a random choice of these parameters is highly unlikely to meet this criterion. 
However, it is possible to derive an approximate formula for finding trapped modes 
above a horizontal plate (6 = 0). This special geometry is discussed next. 

3.3. Horizontal flat plates 
Linton & Evans (1991) obtained an approximate formula for the trapped-mode 
frequencies for a horizontal plate in water of constant finite depth, h; the plate has 
length 2a and is submerged at depth d beneath the free surface. It is assumed that 
the plate is long, so that the two edges of the plate only interact via waves that 
propagate back and forth between them above the plate; this is a typical wide-spacing 
approximation. The main ingredient in the approximation is the reflection coefficient 
for such a wave above a semi-infinite plate, and this can be found by solving the 
corresponding boundary-value problem using the Wiener-Hopf technique. 

We have obtained the analogous formula for deep water in two ways. First, we have 
solved the deep-water boundary-value problem (Parsons 1994) using the Wiener-Hopf 
technique, as used for a similar problem by Greene & Heins (1953). This leads to the 
formula 

F(1) = aa + m71, 
where 

371 1 M k k - a  
4 2  K nK nK 1 

~ ( 1 )  = F~ + - + - tan-' W + - + - log - 

a 1  1 
- -tan-' - - - tan-'- 

l# M 

a 

71 271 

71 K a 

(3.11) 

(3.12) 

(3.13) 

M = (k2  - 12)'/', tp = (1' - K2)'12, k is the positive real root of K = kd tanh kd, rc, are 
the positive real roots of 

K + K ,  tanic,d = 0, n = 1,2 ,..., 
satisfying ( n  - i )n  < ~ , d  < nn, and y = 0.5772 ... is Euler's constant. (We shall 
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discuss the use of (3.11) shortly.) Note that the integral in (3.12) cannot be evaluated 
in closed form, although it can be evaluated numerically without difficulty. 

Second, we have taken the formula obtained by Linton & Evans (1991) for finite h 
and then calculated the limit as h + co (Martin 1994). The result is (3.11) with 

where A = sinh-'(a/l) = -log((k-a)/l), 6 = tan-'(ly/K) and Fo is defined by (3.13). 
Here, the dilogarithm is defined by (Lewin 1958) 

for complex z ,  and 

dx 
log(1 - 2x cos 8 + x2) -. Li2(r, 0) = Re { Li2(reie)} = -z 1' X 

We have also shown that the two formulae for F(1) are equivalent (Parsons 1994). 
In (3.11), 2a is the plate length and m is any integer. Equation (3.11) gives approxi- 

mations to symmetric modes; for antisymmetric modes, n/2 must be subtracted from 
the definition of F(1). The way we use this formula is to fix K ,  d and a, thus fixing k. 
For trapped modes, the wavenumber 1 is then known to lie in the interval K < 1 < k 
(Linton & Evans 1991). Equation (3.11) is then used by varying 1 from 1 = K to 1 = k 
until all solutions have been found. Varying m will give rise to different modes (if they 
exist); in practice, it was found that solutions of (3.11) only exist when m d 0 for both 
symmetric and antisymmetric modes. We use the bisection method to trap 1 until 1 is 
correct to four decimal places (as far as the approximation is concerned, that is). This 
wide-spacing approximation can then be used as a starting point for the numerical 
solution and the true solution sought. The determinant of B,(sj)  will change sign as 
we pass through the true solution, and so, again, we can use the bisection method to 
converge on 1. 

The way in which the trapped-mode frequencies were calculated was first to use the 
wide-spacing formula as just discussed, and then to carefully check the results with the 
numerical solution obtained from the hypersingular integral-equation formulation. In 
practice, it proved convenient to scale the matrix B, (si), j ,  n = 0,1,. . . , N ,  by dividing 
through by its largest element. This bounds the determinant by unity without 
affecting the position of any zeros thereof; in all cases, the largest element was found 
to be B N ( s N ) .  It was found that the wide-spacing approximation was accurate to 
three decimal places virtually throughout, thus speeding up dramatically the final 
numerical process. One other advantage of the wide-spacing approximation is that 
symmetric and antisymmetric modes are distinguished, whereas this is not so for the 
numerical solution (although this could be incorporated for symmetric geometries). 

3.4. Results for inclined plates 
We now discuss the results obtained for an inclined plate. Of course, the wide- 
spacing approximation is no longer valid for this geometry, and so we resort to 
a full numerical solution. However, the horizontal-plate result is still important in 
giving a starting point from which to follow the trapped-mode frequencies as the 
plate is rotated through to the vertical. The solution was followed manually as the 
plate was moved from the horizontal, until a pattern could be seen from which 
to automate the process. In tracking ihe zeros of the determinant, it is important 
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0 

FIGURE 2. Graphs of la against 0, where 0 is the angle between the plate and the vertical, for the 
trapped modes above a submerged, flat plate when a / c  = 5, K a  = 2 and c is the distance from the 
upper plate edge to the free surface: - represents a mode which is symmetric when the plate is 
horizontal; similarly -- represents a mode which is antisymmetric for the horizontal plate. 

(in view of the lengthy computation required) to estimate the interval in which 
the root lies as accurately as possible, thereby reducing the number of bisections 
required to achieve a desired accuracy. So, for decreasing 8 we chose to start by 
using the previous solution for 1 as the new upper bound for the search, and to 
estimate a lower bound from the manual computation carried out. However, the 
computation was checked at regular intervals to enable a more refined interval for 
the new root to be found. Figure 2 contains graphs of la against 8 for a / c  = 5 
and K a  = 2. Here, c is the distance from the upper plate edge to the free surface 
(whence d = c + acos 8). For this geometry, we have one symmetric mode and 
also one antisymmetric mode for the horizontal plate. However, rotating the plate 
will break the symmetry. We can see that the value of 1 gets smaller as soon as 
the plate is rotated. It also appears that the smaller the value of 1 with which 
we start, the quicker it reduces. The mode which started as antisymmetric quickly 
reaches the lower cut-off at 1 = 2 and disappears when 8 = 83" (horizontal is 900). 
The other mode continues until the plate is vertical, when it eventually disappears. 

Figure 3 contains a similar graph, this time with a/c  = 10 and K a  = 4. The flat 
plate starts off with two symmetric modes and two antisymmetric modes. Again, 
we see a decrease in 1 as 8 is decreased. The smallest mode disappears almost 
immediately, at about 8 = 89.5'. The next two modes reach the lower cut-off at 
about 8 = 85" and 8 = 75'. Again, we see the mode which started off as the largest 
symmetric mode continuing right up until the plate is vertical. We note that the 
modes never cross over each other for any value of 8. The results presented here were 
found using N = 20 and an accuracy of three decimal places was required. 

4. Curved plates 
We now extend the previous work and look at the possibility of trapped modes 

existing above a submerged, thin, curved plate, on deep water. In principle, the 
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1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 
0 

FIGURE 3. Graphs of la against 8, where 8 is the angle between the plate and the vertical, for the 
trapped modes above a submerged, flat plate when a /c  = 10, K a  = 4 and c is the distance from the 
upper plate edge to the free surface: - represents modes which are symmetric when the plate is 
horizontal; similarly -- represents modes which are antisymmetric for the horizontal plate. 

t 
Y 

FIGURE 4. Geometry of the submerged, curved plate. 

integral-equation method is applicable to smooth curves I' of any shape. However, 
we shall limit ourselves to circular arcs with a vertical line of symmetry; see figure 4. 
The circle is centred at (0, b + d) and has radius b ;  the arc has length 2a = 2b9. The 
virtue of this choice for r is that we can check the results in two ways. First, for 
suitably chosen parameters, we have an almost flat plate, whereby the results from 
53 can be used for comparison and also as a starting point from which to follow 
the trapped modes as the curvature of the plate is increased. Secondly, McIver & 
Evans (1985) considered the trapping of surface waves above a submerged, horizontal, 
circular cylinder, on deep water, using a numerical procedure based on the analysis 
of Ursell (1951). We expect to recover their results as the circular arc approaches a 
complete circle. 

So, we wish to solve the homogeneous, hypersingular integral equation (2.9), subject 
to [4] = 0 at the two edges of r .  We parametrize the circular arc using 

<(t)=bsin(t$), q(t)=d+b-bcos(t$),  -1 < t <  1. 
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It follows that 

369 

X = b(sin (89) - sin (ts)), Y = 2d + 2b - b(cos (s$) + cos (ts)), 

n(p) = (- sin (ss), cos ( ss ) ) ,  n(q)  = (- sin (fa), cos (ts)), JV = cos (s - t)$, 

nY.1- n;n: = - sin ( s  - t)s, nfn: - n;n; = - cos ( s  + t)$, 

R = 2bsin(ls- t19/2) (4.1) 
and 0 = -$R4/b2. From (2.10), the kernel of (2.9) is given by (3.1), where X ( X ,  Y )  
can easily be evaluated from its definition, (2.11), and 

Y ( R )  = bP2 {(b2 - tR2)( l /R)K1(1R) + +(lR)2K2(1R)} 

= R-2 + $1210g(ilR)+12B(R); 

the second equality defines the non-singular function 9. Now, from (4.1), we have 

R-2 = ( U ~ S  - tl)-2 + a-2B1(ls - tl), 
log(i1R) = log(;lals - tl) + 2 4 s  - tl) 

where 

W , ( w )  = {sin(iw9)}-2 - w - ~  and 922(w) = log ( sin; ;;; 2)) 

Hence, parametrizing (2.9) gives a one-dimensional, homogeneous, hypersingular 
integral equation, which we write as 

1 1 

f(t)al(ls-t l)dt+(la)2 f(t)K(s,t)dt =0, -1 < t < 1, 
dt + 1, 11 

where 

Thus, we have isolated the hypersingular term and the logarithmically singular term. 
All the remaining kernels, 8, W1, 9 2  and Z, are non-singular and easily computed, 
either from their definitions or from expansions in 1s - tl as appropriate (Parsons 
1994). 

4.1. Numerical procedure 
The numerical procedure now follows that of $3.2. We substitute the expansion (3.5) 
for f( t )  and collocate at s j ,  j = 0,1,. . . , N ,  giving the homogeneous equation 

K(s ,  t )  = i log(i1als - tl) + ;9)2(I~ - tl) + 9 ( R )  + X ( X ,  Y ) .  

N 

C a n D f l  (sj) = 0, j = O , l ,  ..., N ,  
fl=O 

where 

1 

+ ( 2 ~ ) ~  L1(l - t2)1/2Ufl(t)K(sj,t)dt. 

The hypersingular integral and the logarithmically singular integral can both be 
evaluated exactly as in 93.2. It can be shown that D,(s) has the following properties: 
D,(s) = D,(-s) when n is even and D,(s) = -D,(-s) when n is odd, thereby halving 
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1.0 1 
0 0.5 1.0 1.5 2.0 2.5 3.0 

9 
FIGURE 5. Graphs of la against 9 for the trapped modes above a submerged, curved plate when 
a / d  = 10 and K a  = 1: - represents a mode which is symmetric in the limit 9 -+ 0 (that is, a flat 
plate); and -- represents an antisymmetric mode in this same limit. 

computation time in all cases. Again, a non-trivial solution is given by the vanishing 
of the determinant of Dn(sj) .  

4.2. Results 
For the curved plate, we sometimes choose to non-dimensionalize with respect to 
the length of the plate, 2a = 2b9, and sometimes with respect to the radius, b, as 
convenient. 

Figure 5 shows graphs of la against 9 for K a  = 1 and a/d = 10 (in effect, bending 
the plate towards a circular cylinder). We start off from the horizontal plate solution, 
where a symmetric and an antisymmetric mode are found, and follow them as 9 is 
increased. We can see that the smaller mode vanishes when 9 NN 30". However, the 
other solution does not vanish, and can be seen to remain as we approach 9 = n. 
Clearly, we cannot reach n using this method of solution, as we have assumed that 
[4] = 0 at both edges of the plate. However, we can get close enough so that the 
result can be used to help find another type of solution: we non-dimensionalize with 
respect to nb, and then reduce 9. The reason for this choice is that in the limit 9 + n, 
we have a = bn and so we are fixing the radius of the plate to match up with the 
solution that we have just found. Reducing 9 now corresponds to reducing the length 
of the plate, thereby giving a different solution. 

Figure 6 shows the graph of lnb against 9 for K n b  = 1 and nb/d = 10. At first, the 
graph changes slowly as we reduce 9. However, after 9 w 130" the solution quickly 
decreases towards the lower cut-off, and, of course, as the plate vanishes when 9 = 0, 
so does the solution. However, numerically at least, the solution does appear to 
remain for all 9 > 0. 

We continue with this approach in figures 7 and 8. This time all the parameters 
remain the same except K ,  so that in figure 7 we plot la against 9 for K a  = 4 and 
a/d = 10. Again, starting off from the flat-plate solution, we have two symmetric 
and two antisymmetric modes to follow. As can be seen from figure 7, the smallest 
of these modes vanishes almost immediately. The next two vanish at about 9 = 30" 
and 115". Again, however, we see that the largest solution remains all the way up 
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FIGURE 6. Graph of lnb against 9 for the trapped mode above a submerged, curved plate when 
Knb = 1 and nb/d = 10. 

FIGURE 7. Graphs of la against 9 for the trapped modes above a submerged, curved plate when 
a/d = 10 and K a  = 4: - represents modes which are symmetric in the limit 9 + 0 (that is, a flat 
plate); and -- represents antisymmetric modes in this same limit. 

until we approach n, and is still above the lower cut-off. Reversing the process, 
as before, by non-dimensionalizing with respect to nb, we can see that the solution 
hardly changes as we reduce 9 until we reach 9 NN 70". After that, the solution 
changes dramatically, rapidly approaching the lower cut-off, before vanishing along 
with the plate. We can explain these results as follows. By keeping the plate length 
fixed and varying 9, the effect of deforming the plate will be felt along its entire 
length, including the point closest to the free surface. However, by fixing the radius b 
and then varying 9, the main difference will be caused by the fluid motion at the two 
edges of the plate. Therefore, as we increase K ,  the significant fluid motion becomes 
restricted to a thin layer near the free surface, and is little affected by the plate edges. 
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FIGURE 8. Graph of Inb against 9 for the trapped mode above a submerged, curved plate when 
Knb  = 4 and nbld = 10. 
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FIGURE 9. Graph of laln against 9 for the trapped mode above a submerged, curved plate when 
Kaln  = 0.3 and a / &  = 2 (-). Also shown is the graph of lb against 9 for the trapped mode above 
a submerged, curved plate when K b  = 0.3 and b/d = 2 (--). 

Although we know that the method is converging to the correct solutions as the 
plate approaches the flat-plate solution, it is desirable to check its validity at the 
other extreme. In fact, it is possible to compare with the solutions of McIver & 
Evans (1985) for a submerged, horizontal circular cylinder, given a suitable choice of 
parameters. This has been done extensively, and in all cases the results were found to 
be in agreement. As an example, figure 9 contains two graphs whose starting value 
was taken from the above paper. 

First, we follow their solution for a symmetric, trapped mode above a submerged 
circular cylinder, for K b  = 0.3 and b/d = 2, by non-dimensionalizing with respect to 
the radius b. This is straightforward: we merely set K b  and b/d as above and then 
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vary 9; the results are given by the broken curve. Secondly, we non-dimensionalize 
with respect to the length of the plate. To this end, it proves convenient to non- 
dimensionalize by u/n,  so that the solution matches the other one for 9 = r c ;  the 
results are given by the solid curve. We see similar behaviour as before, with the 
fixed-radius solution vanishing along with the plate, and the fixed-length solution 
continuing up to the flat-plate solution. For the flat-plate limit, we can use either the 
approximate solution or the full numerical solution, or both, as shown in 93. We find 
that the mode is symmetric in this limit and is seen to be the only one in existence 
for the given geometry. It is clear that a mode which starts off symmetric and ends 
up symmetric, above a symmetric geometry, must itself be symmetric. 

N.F.P. was supported by a studentship from the SERC. 

Appendix A. Computation of L,(x) 
For the evaluation of L,(x), defined by (2.7), we have several options. For example, 

Abramowitz & Stegun (1965) gives several series expansions. However, for large x 
and for many values of m, this is an inefficient method. Another possibility is to use an 
integral representation given Apelblat & Kravitsky (1985), but this is also inefficient 
when many values of m and x are required. We therefore turn our attention to the use 
of recurrence relations. These can be derived by differentiating the (homogeneous) 
recurrence relations for the modified Bessel function I y ( x )  with respect to v ,  and then 
setting v = m. Thus, we obtain the following inhomogeneous recurrence relations 
for L,: 

(A 1) Lm-l(x) - Lm+l(x) - (2m/x)Lrn(x) = (2/x)Irn(x), 
Lh(x) - Lrn+l(x) - (m/xWrn(x) = (1/xVrn(x)* 

Consider (A 1 ) .  At first sight, it appears that we can use this in the forward direction 
with starting values Lo(x) = -Ko(x) and L,(x) = Kl(x) - I o ( x ) / x .  However, owing to 
severe accumulation of rounding errors, this approach turns out to be misguided, as 
is the case when forward recurrence is used for the computation of I ,  or J,. Instead, 
we use what is known as the WimpLuke  method (Wimp 1984). Fix M as an integer 
somewhat larger than the largest value of m required. Then, generate a solution Z ,  
of the inhomogeneous equation, (A l ) ,  in the backwards direction, with the starting 
values 

Z M + l  = Z M  = 0. 
Next, generate a solution Y, of the homogeneous equation (with the right-hand side 
of ( A l )  replaced by zero), again in the backwards direction but with the starting 
values 

YM+, = O  and Y M =  1.  
The desired solution of (A 1)  is then formed by letting 

0 < m < M + 1, 

where Lo = -Ko(x) .  In fact, the general solution (A2) is slightly simplified for our 
problem, since Y,/Yo = Irn/I0, whence 

I r n + Z , ,  O < m < M + l .  
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as new starting 
values for Z M  and ZMPl, respectively, and then repeat the above procedure. This 
process can be repeated. In practice, provided M is chosen slightly greater than 
the maximum value of m required in the summation containing L,, and only one 
iteration is performed, the results are found to be excellent. 

N. F. Parsons and P. A. Martin 

To achieve greater accuracy, we can iterate: take LM and 

Appendix B. Evaluation of W,, 
W,, is defined by (3.9). Using (3.6), we obtain 

where 

Yn = 1’ cos n y  log ( i lals  - cos y 1) dy. 

Using the expansion 

1 

m 
log Is - tl = -log2 - 2 x  -T,(S) T m ( t ) ,  

m = l  

and Tm(cosy) = cosmy, we can easily integrate over y to give 

YO = n log(la/4) and “Y-, = -(n/n)T,(s) 

for n 2 1. The result (3.10) follows from (B 1). 
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